
Robust Proxy Sensor Model for Estimating Black Carbon
Concentrations Using Low-Cost Sensors

Juan Paredes-Ahumada
Pau Ferrer-Cid

Jose M. Barcelo-Ordinas
Jorge Garcia-Vidal

juan.antonio.paredes@upc.edu
pau.ferrer.cid@upc.edu

jose.maria.barcelo@upc.edu
jorge.garcia@upc.edu

Universitat Politecnica de Catalunya (UPC)
Barcelona, Spain

Cristina Reche
Mar Viana

cristina.reche@idaea.csic.es
mar.viana@idaea.csic.es

Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC)

Barcelona, Spain

ABSTRACT
Air quality monitoring sensor networks focusing on air pollution
measure pollutants that are regulated by the authorities, such as CO,
NO2, NO, SO2, O3, and particulate matter (PM10, PM2.5). However,
there are other pollutants, such as black carbon (BC), which are
not regulated, have a major impact on health, and are rarely mea-
sured. One solution is to use proxies, which consist of creating a
mathematical model that infers the measurement of the pollutant
from indirect measurements of other pollutants. In this paper, we
propose a robust machine learning proxy (RMLP) framework for
estimating BC based on nonlinear machine learning methods, cali-
brating the low-cost sensors (LCSs), and adding robustness against
noise and data missing in the LCS. We show the impact of LCS data
aggregation, denoising and missing imputation on BC estimation,
and how the concentrations estimated by the BC proxy approximate
the values obtained by a reference instrument with an accurate BC
sensor.

CCS CONCEPTS
• Networks→ Sensor networks; • Computing methodologies→
Machine learning.
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1 INTRODUCTION
Black carbon (BC) is a major component of fine particulate mat-
ter, a potent warming agent in the atmosphere which contributes
to regional environmental disruption and accelerates glacier melt-
ing. BC appears from incomplete combustion and comes mainly
from road traffic, it is present in urban aerosols and is linked to
cardiovascular and respiratory diseases. The monitoring of BC is not
easy and is not regulated by the European Union (EU) Air Quality
Directives. In contrast to regulated pollutants, there is not much
affordable equipment to monitor BC, which makes the availability
of BC measurements operationally expensive and difficult. The new
proposal for a Directive of the EU Parliament on ambient air quality
and cleaner air for Europe, published in October 2022, states that in-
troducing additional sampling points for unregulated air pollutants of
emerging concern, such as ultrafine particles, black carbon, ammonia
or particulate matter (PM), will support scientific understanding of
their effects on health and the environment. This supports the need to
determine BC concentrations, either by direct or indirect methods, in
European urban areas. In recent years there has been a great interest
in using LCSs to measure regulated pollutants such as CO, NO2,
NO, SO2, O3, and PM. Such sensors have a cost ranging from a few
tens of Euros to a few hundred Euros, which makes their use and
deployment affordable [1, 2]. One way to increase the availability of
BC measurements without the need to deploy expensive equipment
is the use of virtual sensors. A virtual sensor is defined as a math-
ematical model that estimates the target phenomenon at a specific
location where no physical sensor is available [10]. For example,
Zaidan et al. [14] propose the use of virtual sensors to calibrate CO2
sensors and to estimate BC concentrations, demonstrating that black
box calibrators are more efficient than white box calibrators. Fung et
al. [8] also compare the use of white box models with several black
box models for building a BC calibrator, including random forest
(RF), support vector regression (SVR), artificial neural networks
(ANN) and long short-term memory (LSTM) methods, showing
the potential use of these methods for building BC virtual sensors.
Ferrer-cid et al. [3] use signal reconstruction techniques on top of a
graph whose relationships are learned using data-driven techniques
for building a virtual sensor that imputes missing values in an O3
monitoring IoT network.
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A proxy is a specific type of virtual sensor that estimates a target
pollutant from indirect sensor measurements. Zaidan et al. [13]
propose a mutual information approach to select the most relevant
proxy inputs to estimate ozone concentration. Fung et al. [7] develop
an input-adaptive proxy for BC, which selects input variables of
other air quality sensor values based on their correlation coefficients
with the output variable. The model uses ordinary least squares as the
fitting method. Moreover, a white-box and a black-box model have
been compared as a proxy for estimating BC concentrations [15]
using a Bayesian neural network, and Rovira et al. [12] evaluated
the use of precision instrumentation for the creation of BC proxies.
In this work, we propose a robust machine learning proxy (RMLP)
framework for estimating BC based on nonlinear machine learning
methods, calibrating the LCSs, and adding robustness against noise
and data missing in the LCS. We focus the goal of the paper on the
methodology to build the proxy, highlighting the challenges in the
proxy construction process, such as the fact that the data come from
different LCS nodes, with different sampling granularity and with
gaps at different time stamps. The outline of this paper is as follows:
section 2 defines how the proxy is built. Section 3 describes the data
set used in the study. Section 4 shows the results obtained with the
BC proxy. Finally, section 5 presents the conclusions of the paper.

2 ROBUST MACHINE LEARNING PROXY
(RMLP) SENSOR MODEL FOR BLACK
CARBON ESTIMATION

In the process of creating a data-driven robust proxy for BC esti-
mation, it is necessary to consider the following aspects: i) LCSs
calibration, ii) sensors may have sampled each phenomenon involved
in the proxy with different time granularity, iii) LCS measurements
may be noisy, iv) some of the data captured by the sensors may have
gaps, and finally, v) the selection of a model and identification of the
features involved in the building of the proxy.

2.1 In-situ low-cost sensor calibration
LCSs for air quality monitoring are often not calibrated for the
ambient conditions under which they will provide data. This causes
that the data provided by these instruments lack sufficient accuracy
due to low signal-to-noise ratios or interference from environmental
factors. This poses a major problem, as the quality of the sensor data
cannot be assessed [5]. To improve the quality of these sensors, LCSs
are calibrated in-situ with a supervised machine learning model. To
do this, a sensor is co-located with a reference instrument for a
period of time. Due to cross-sensitivities and correlations, different
sensor calibration models may require different sensor inputs. The
response of low-cost particulate matter sensors and gas sensors
depends on temperature and relative humidity, and can have other
cross-sensitivities with other gas sensors. We refer to papers [1, 2, 4,
5] for in-situ calibration mechanisms in air quality LCSs.

2.2 Data aggregation
The set of LCSs used to generate the proxy does not necessarily
come from the same node, and therefore each signal may have been
sampled at a different frequency and aggregated at a different time
interval. In addition, as can be seen in Table 1, to calibrate in-situ
each of the LCSs, the period to which the reference values have

been aggregated may also be different from the BC of the reference
instrument. Calibrating in-situ with time intervals different from the
aggregated time interval of the reference station can have a strong
impact on the performance of the calibration method [6]. We will
investigate in the results section the impact of aggregating data.

2.3 Denoising
The denoising process consists of removing the noise introduced
during the data acquisition process, improving the quality of the data.
In this sense, during the training phase, the raw LCS measurements
are denoised before being corrected by the calibration model. During
the estimation phase, the incoming LCS measurements are also
corrected by the denoising filter. We have chosen the Savitzky-Golay
smoothing filter as the denoising method, since the data streams
follow a temporal trend. For this filter, we select a symmetric window
around the point to be corrected and fit a polynomial of degree 𝑝 in
the least-squares sense. The smoothed value will be the estimate of
the polynomial at the central point t𝑖 of the time window [9].

2.4 Data imputation
The construction of a BC proxy requires simultaneous measurements
of all predictors and no loss of any of them. However, it is possi-
ble that for various reasons, such as hardware or communication
failures, there may be missing values. In our case the gaps are of
the missing completely at random (MCAR) type where the missing
values do not depend on any of the variables, either the observed or
measured values. Data imputation is the process of filling in missing
values with estimated values obtained from the same data set. One
approach used in the literature [11] is the multiple imputation pro-
cess, which uses the entire data set to perform the imputation. This
process consists of filling in the missing entries for a variable in the
predictor matrix several times based on the other measured variables.
Data imputation is an open research field with several approaches
proposed in the literature. For imputing the missing values we test
multivariate imputation by chained equations (MICE) [11].

2.5 Building the proxy sensor model
The BC proxy model consists of a nonlinear data-driven method.
We denote by y𝐵𝐶∈RM the BC values provided by the reference
instrumentation, where M is the number of samples. Then, we can
group the different LCS calibrated measurements into a sensor ma-
trix XScal∈RM×PS , where PS=|S| is the dimension of the calibrated
sensor set, i.e., S and PS are respectively the set of sensors and the
number of sensors participating in the proxy process. As the number
of sensors used as predictors increases, there is a higher probability
of having missing values at some point, which makes it costly and
difficult to build a successful BC proxy model and also increases the
probability of overfitting. For this reason, the set of predictors was
iteratively reduced using a backward feature elimination (BFE) al-
gorithm. The BFE algorithm starts with the full set of predictors. At
each iteration, the predictor that has the least impact on the model is
removed from the model. The process is repeated until only a single
predictor remains. We can select the best subset of SFS sensors to
use as predictors, where S is the set of available sensors:

S ⇒
𝐵𝐹𝐸
SFS ⊂ S (1)
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Algorithm 1 RMLP for black carbon estimation.

Input: {S,XS,Yref , fcals (·), yBC,Tagg, fproxy(·)}

⊲ Obtain LCS calibrated data for the proxy
1: XS ← Denoising_Model(XS)
2: for s∈S do
3: if 𝑠 is calibrated then
4: xscal ← Get_Sensor(XS)
5: else
6: ys ← Get_Ref(Yref )
7: Zs ← Select_Features(XS)
8: xscal ,Θ𝑠 ← Calibrate_LCS(Zs, ys, fcals (·))
9: end if

10: XScal ← Add_To_Proxy_Training_Matrix(xscal )
11: end for

⊲ Train proxy model
12: 𝑡𝑚𝑎𝑥 ← Max_TimeInterval_Proxy(Tagg)
13: XScal ← Aggregation(XScal , tmax )
14: yBC ← Aggregation(yBC, tmax )
15: Θ𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ← Train_Imputation_Model(S𝐹𝑆 ,XScal )
16: S𝐹𝑆 ,Θ𝑝𝑟𝑜𝑥𝑦 ← BFE(XScal , yBC, fproxy(·))

⊲ Robust proxy model for BC estimation of new measurements
17: while x𝑛𝑒𝑤 do
18: for s∈SFS do
19: if 𝑡𝑠<𝑡𝑚𝑎𝑥 then
20: x𝑛𝑒𝑤𝑠 ← Aggregation(x𝑛𝑒𝑤𝑠 , 𝑡𝑚𝑎𝑥 )
21: end if
22: end for
23: x𝑛𝑒𝑤 ← Denoising_Model(x𝑛𝑒𝑤 )
24: for s∈SFS do
25: x𝑛𝑒𝑤 ← f𝑐𝑎𝑙𝑠 (x𝑛𝑒𝑤𝑠 ,Θ𝑠 )
26: end for
27: x𝑛𝑒𝑤 ← Imputation_Model(x𝑛𝑒𝑤 ,Θ𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 )
28: x̃𝐵𝐶 ← f𝑝𝑟𝑜𝑥𝑦 (x𝑛𝑒𝑤 ,Θ𝑝𝑟𝑜𝑥𝑦 )
29: end while

Now, the data matrix involved in the design of the proxy model is
given by XSFS∈RM×PFS , where PFS= |SFS | is the dimension of the
sensor array selected by the BFE algorithm. We note that XSFS⊂XS ,
as it only includes those features selected by the BFS mechanism.
The data-driven proxy model, then, can be defined as:

y𝐵𝐶𝑖
≈ 𝑓𝑝𝑟𝑜𝑥𝑦 (xSFS𝑖

), 𝑖 = 1, . . . , 𝑀 (2)

where 𝑓𝑝𝑟𝑜𝑥𝑦 : RPFS → R is the function that estimates the BC con-
centrations and depending on the model’s assumptions different
machine learning models can be applied to learn function 𝑓𝑝𝑟𝑜𝑥𝑦 (·).
For modeling the proxy function 𝑓𝑝𝑟𝑜𝑥𝑦 (·), we propose to compare
three nonlinear models: support vector regression (SVR), random
forest (RF), and an artificial neural network (ANN). The SVR is a
kernel method that maps the data into a higher feature dimensional
space finding the regression curve while the calculations are done in
the input space through a kernel function. The RF method combines
several decision trees by sampling the data set via bootstrapping.
Finally, an ANN consists of layers of interconnected nodes. Each
node receives as input a linear combination of the values of the
nodes in the previous layer, which is then mapped via a nonlinear
activation function. We use a fully connected, feed-forward neural
network with a single hidden layer with as many nodes per layer as
the number of predictors PFS and a single output for the regression.
ReLu was used as the activation function. We note that the BFE
mechanism is linked to the supervised machine learning mechanism
used. For each supervised mechanism the BFE result can be different
and therefore a different set SFS can be chosen. When the set SFS is
fixed, the trained model will set the hyperparameters to be used in
the estimation process.

2.6 Robust machine learning proxy (RMLP)
sensor model

The goal of the RMLP sensor model is to estimate BC concentration
values from other measurements either taken by reference stations or
by LCSs in a robust way, meaning that the algorithm has to calibrate
the LCSs if they are not calibrated, it has to eliminate the noise in
those sensors, and it has to impute values in those sensors that do
not take measurements at that instant before estimating the proxy.
Algorithm 1 shows the process of estimating BC concentrations
using a robust proxy. The input to the algorithm consists of the
set of 𝑆 sensors participating in the proxy. These sensors can be
accurate instrument sensors, calibrated LCSs or LCSs that need
to be in-situ calibrated. The data are organised in a data matrix
XS∈RM×PS that includes the sensors participating in the process.
For those sensors that need to be in-situ calibrated, a matrix of
reference values Yref∈RM and a calibration function 𝑓𝑠𝑐𝑎𝑙 : R

Pscal→R
(e.g., MLR or SVR) for each non-calibrated sensor is included, with
Pscal the number of sensors participating in the calibration of sensor
𝑠. The sensors sample at different frequencies and aggregate samples
at different time intervals, so we introduce a vector T𝑎𝑔𝑔∈R𝑃𝑆 with
the time intervals at which each sensor produces values. Finally,
we have the BC reference values y𝐵𝐶∈RM to train the proxy and
a nonlinear function 𝑓𝑝𝑟𝑜𝑥𝑦 : RPFS→R or model (e.g., SVR, RF or
ANN) to train the proxy.

The RMLP algorithm starts denoising the data and then calibrates
the non-calibrated sensors (lines 1-11). In this process, each sensor
calibrates in-situ using an array of sensors of size Pscal including
those sensors that have cross-sensitivities or environmental sensors
that participate in the calibration. Finally, when the sensors are cal-
ibrated, a new matrix X𝑆𝑐𝑎𝑙 ∈RM×PS of calibrated sensor values is
created to participate in the proxy design (line 10). The next phase
of the process is to train the proxy model (lines 12-16). Since the
sensors participate in the proxy sample at different frequencies, the
data must be aggregated (lines 12-14) to the largest time interval.
Next, a value imputation model (line 15) is trained for each sensor
participating in the process. Then, the BFE algorithm selects (line
16) the final sensors S𝐹𝑆 that participate in the proxy, and that mini-
mize the root mean square error (RMSE) of the BC, obtaining the
hyperparameters Θ𝑝𝑟𝑜𝑥𝑦 of the proxy model. The last phase repre-
sents the estimation of a robust proxy for black carbon estimation
(lines 17-29). For each new set of measured values x𝑛𝑒𝑤∈RPFS , first
the data is aggregated (lines 18-22) to proxy rate, the denoising
(line 23) algorithm is performed to remove noise, and the pollutant
concentration is estimated using the hyperparameters obtained in
the sensor calibration process (lines 24-26). Then, if any values are
missing from the array, an imputation mechanism is performed to
fill gaps (line 27). Finally the BC concentration is estimated (line
28).

3 SENSOR NODES AND DATA SET
We consider two types of measurements, those obtained by reference
instrumentation, and those obtained with nodes deploying LCSs. Ref-
erence and LCS values were measured at reference station located in
Palau Reial (41◦23′14′′N, 2◦6′56′′E, 80 m.a.s.l.), Barcelona, Spain.
The reference values for O3, NO2, NO and PM10 were taken from
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the values published by the reference station. The reference station
does not provide PM2.5 concentrantions. The reference values for
BC were taken with a multiangle absorption photometer (MAAP,
Thermo ESM Andersen Instrument) and N with a water-based con-
densation particle counter (WCPC TSI 3785) with 1 min and 5 min
intervals respectively. The meteorological variables (temperature and
relative humidity) were obtained from a meteorological station lo-
cated on the roof of the Faculty of Physics of the Univ. of Barcelona,
about 400 m from the Palau Reial station. All values were taken in
the period from 19/10/2021 to 25/12/2021.

Table 1: Data sets used in the proxy (19/10/2021 to 25/12/2021).

Variable # Samples Time Measurement
interval Source

BC 89361 1 min Ref. Stat.
O3 9527 10 min Ref. Stat.
NO2 9527 10 min Ref. Stat.
NO 9527 10 min Ref. Stat.
PM10 9527 10 min Ref. Stat.
N 19040 5 min Ref. Stat.

T 9521 10 min Met. Stat.
RH 9521 10 min Met. Stat.

O3 3292242 2 s LCS
NO2 3292242 2 s LCS
NO 3308335 2 s LCS
PM10 85895 2 min LCS
PM2.5 85895 2 min LCS
N𝑖 85895 2 min LCS

We used two nodes with LCSs for measuring O3, NO𝑥 , PM𝑥 . The
Captor node is a node built at Universitat Politecnica de Catalunya
(UPC), and includes three electrochemical Alphasense sensors; one
OX-B431 O3 sensor, one NO2-B43F NO2 sensor and one NO-B4
NO sensor, and one DHT1 Grove air temperature (T) and air relative
humidity (RH) sensor to measure the internal box environmental
temperature and relative humidity. The sampling rate can be recon-
figured, and for our experiments it was set to 2 s. The second LCS
node is a PurpleAir PA-II node that measures PM𝑥 concentrations.
The PA-II node uses PMS5003 dual laser particle counters that count
suspended particles in sizes of N𝑖 with 𝑖={0.3 , 0.5 , 1.0 , 2.5 , 5.0 ,
10 } µm. These particle counts are converted to PM mass concentra-
tions in µg/m3 or to the total ultrafine particle number concentration
(N). The data can be downloaded with a 2 min time interval. Table 1
summarizes the data sets indicating the time interval of each variable
considered for the BC proxy model.

4 RESULTS
The methodology for training the proxy is as follows: i) a randomly
selected fraction of the data set (75%) was used for training to ensure
that the model copes with a wide range of concentrations among the
input variables, eliminating variations due to different seasons and
times of day, and the remaining fraction (25%) was used to validate
the model, ii) a 10-fold cross-validation strategy was used to obtain
the model hyperparameters by averaging the root-mean square error
(RMSE).

4.1 Low-cost sensor calibration
Table 2 shows the RMSE and R2 values obtained in the calibration
of the O3, NO2, NO, and PM10 sensors with R2 ranging from 0.8 to

0.9. Since the SVR calibration results are the best, we will use these
estimated values as input values for the BC proxy.

Table 2: LCS calibration results using MLR and SVR.

MLR SVR

RMSE R2 RMSE R2

O3 8.14 0.86 7.08 0.90
NO2 7.98 0.81 6.70 0.86
NO 7.07 0.83 5.99 0.88
PM10 5.22 0.70 4.34 0.79

4.2 Machine learning BC proxy performance
As shown in table 1, the pollutants used as predictors for BC con-
centration have different time interval. Hence, the first step is to add
the data to the most restrictive feature, which samples every 10 min.
For the period under consideration, 7.6% of BC measurements were
missed completely at random, whereas the BC concentration has a
mean value of 0.82 ± 0.79 µg/m3. In this section, we will consider a
dataset where we do not denoise and do not consider measurements
when any of the variables are missing. We use the BFE algorithm
on the reference station data set to determine the optimal subset of
predictors SFS and build a baseline BC proxy (SVR, RF and ANN).
Using this subset of predictors we then build a BC proxy using the
LCSs included in Captor and commercial nodes, Table 3. The first
thing we can observe is that the BFE algorithm chooses different
features when using different models. For example SVR chooses as
optimal features {O3, PM10, N, RH, T} and RF selects {O3, PM10,
N, T}, removing RH. On the other hand, ANN adds NO and NO2 as
features to its optimal set {O3, NO2, NO, PM10, N, T}. The second
observation is that the BC proxy using LCSs performs close to the
BC proxy using features measured by the reference station. Among
the models used, we see that SVR offers the best performance with
a RMSE=0.37 µg/m3 and R2=0.76 if we use the data from the ref-
erence stations versus a RMSE=0.41 µg/m3 and R2=0.71 if we use
LCSs. These results are in agreement with the results obtained in
the same area during 2 years (2018 and 2019 [12]), with reference
stations, and where seasonality was also studied.

Table 3: BC proxy comparison after backwards feature selection.

Predictors subset Ref. Station LCS

RMSE R2 RMSE R2

SVR O3, PM10, N, T, RH 0.37 0.76 0.41 0.71
RF O3, PM10, N, T 0.41 0.71 0.47 0.68
ANN O3, NO2, NO, PM10, N, T 0.41 0.71 0.41 0.71

A third observation is whether some overfitting is present in the
BC proxy calculations with LCSs because the optimal model using
BFE is calculated on the reference station data which does perform
a cross-validation process to avoid overfitting. We use reference
data given that it acts as a baseline case since we know that they
are accurate data, whereas if we perform a BFE on the LCS data,
the selection of the BFE will be very dependent on the quality of
each sensor at every moment. We have run a BFE with SVR on
the LCSs to see how different the choice of features is, doing cross-
validation as is done with the BFE on reference data. The results
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of this experiment showed that the set of predictors is comprised of
{O3, NO2, PM2.5, N, T, and RH}, where in the set appears NO2, and
PM10 is replaced by PM2.5, obtaining a slightly better performance
(RMSE=0.39 µg/m3, R2=0.76) than when using the set fixed by the
reference station1. Finally, in the case of ANN, a higher number
of features have been chosen, namely NO2 and NO, which means
a higher number of sensors in the array implying a higher energy
consumption and node cost. On the other hand, between SVR and RF
there is a difference between the RH sensor that is usually integrated
with the T sensor. We ran the ANN with the features chosen by
SVR, and observed an RMSE=0.41 µg/m3 and R2=0.72 with data
from the reference station and RMSE=0.44 µg/m3 and R2=0.68 with
LCS data. The performance is a little worse, since it does not use its
optimal parameters, but the three models have a similar behavior in
terms of RMSE and R2. To analyse the robustness of the BC proxy in
the following sections we will use the SVR model with {O3, PM10,
N, RH, T} features as baseline case.

4.3 Impact of data aggregation
Typically, monitoring reference stations report air quality values
by aggregating samples at different time intervals, such as 30 and
60 min. LCSs aggregate samples in a similar way and are in-situ
calibrated over these time intervals. We study the impact of aggre-
gating the data of the variables involved in the proxy. We construct
a BC proxy model using a data set averaged at 30 and 60 min for
both the baseline and LCS data. As shown in table 4, for the 30 min
averaged data set the performance of the reference station proxy
remains almost unchanged, while the performance of the LCS proxy
model decreases slightly. For the 60 min averaged data set, the per-
formance of both proxy models worsens, mainly due to the decrease
in samples.

Table 4: Impact of sensor data aggregation on the SVR BC proxy.

Aggr. time
interval

Ref. Station Proxy LCS Proxy

RMSE R2 RMSE R2

10 min 0.37 0.76 0.41 0.71
30 min 0.38 0.75 0.43 0.68
60 min 0.43 0.69 0.50 0.58

4.4 Robust machine learning proxy performance
LCS and reference stations suffer from missing data and LCS from
noise. In order to achieve a robust proxy, we investigate the impact
of these two problems in the following sections.

4.4.1 Noise reduction filter for building a BC proxy model.
We apply a Savitzky-Golay noise reduction filter on the raw measure-
ments of the optimal predictor set of LCSs. We use time windows of
1 , 2 and 6 hours, in conjunction with low-order polynomials (order
𝑝=1 and 𝑝=2) to smooth the data. The filtered data streams are then
calibrated and a new BC proxy model is built via the SVR method.
During the estimation phase the new measurements are filtered using
the same parameters obtained during the training phase. Table 5
shows the testing phase performance of the denoising procedure.
The model mitigates the effects of noise on the measured signals and
1We cannot compare with the reference station using PM2,5 since the reference station
did not measure it.

thus has improved performance, with little variation in the specific
filter parameters. We can observe that low order filters, e.g., 𝑝=1 or
𝑝=2 with small windows of 1 h or 2 h, are the best performers. We
choose for the rest of the study a filter of order 𝑝=2 and window 1 h.

Table 5: SVR BC proxy results using a Savitzky-Golay filter.

Window (1 h) Window (2 h) Window (6 h)

p=1 p=2 p=1 p=2 p=1 p=2

RMSE 0.39 0.36 0.37 0.40 0.42 0.38
R2 0.74 0.78 0.77 0.72 0.70 0.75

We simulate artificial noise on all predictors in the test set with
a signal-to-noise ratio (SNR) ranging from 0 to 30 dB. The RMLP
trained on a filtered data set (window=1 h, p=2), is used to estimate
the BC concentration. Figure 1 shows the RMLP performance with
noise. For all noise values studied, the performance improves after
applying the noise reduction filter. A degradation of the BC estima-
tion is observed when the SNR is below 25 dB. In contrast, applying
the RMLP, it is observed that this degradation occurs with noise
that produces SNRs below 10 dB, indicating the filter’s ability to
improve the robustness of the RMLP model in estimating BC in the
presence of noise in the sensor streams.

Figure 1: Impact of noise in the BC proxy estimation.

4.4.2 Impact of missing data imputation. We simulate missing
data completely at random (MCAR) where the missingness is in-
dependent on either the observed values or the missing values. The
missingness occurs simultaneously to all the predictors with percent-
ages ranging from 10% to 50% of the data size for each predictor.
The values of each sensor in the training data set are imputed using
the MICE algorithm, and then a BC proxy model is trained using
the imputed data set. First, to test the suitability of such a proxy,
the performance was measured on a test data set with no missing
inputs, Figure 2(a). It is observed that by imputing values with MICE
losses below 20% the performance is similar to the baseline case
(without artificial missings). The performance slightly worsens be-
tween 20-50% of missing values. MICE is better than performing
a simple mean imputation for each predictor, specially for small
missing percentages. It is also observed that removing missing data
worsens the performance of the proxy. To test the stability of the
RMLP model in the long run, we train an RMLP on a set of MICE
imputed data with 10% of missing values and simulate missing en-
tries in measurements during the estimation phase, with varying
missing percentages. Figure 2(b) shows the performance of a BC
proxy model with no artificial inputs missing during the training
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phase. In the latter case, as no relationship between predictors was
learned during training, a simple mean value imputation was applied
in the estimation phase to fill in the missing inputs. As can be seen
in figure 2(b), the performance of the BC proxy model suffers in the
presence of missing values with RMSE ranging from 0.4 µg/m3 in
the case of the reference BC proxy to RMSE values ranging from
1.0 to 1.2 µg/m3. In contrast, the RMLP with MICE imputation has
a good performance in a wide range of missing value percentages.

(a) Impact of missing imputation
over the train data set.

(b) Impact of missing imputation
over the test data set.

Figure 2: Impact of missing data imputation on RMLP.

Figure 3: Impact of missings on different predictors.

Finally, Figure 3 shows the performance of the RMLP during
the estimation phase as different LCSs fail with varying missing
percentages. It is observed that the impact of missing sensor values
impacts the performance of the proxy depending on which sensor
is missing those values. Missing O3 and PM10 has less impact than
missing N. In the case of imputation using only the mean of the N,
the performance worsens, while using RMLP with MICE improves
with values close to the baseline with an RMSE of 0.41 µg/m3.

5 CONCLUSIONS
In this paper, we have proposed a mechanism called robust machine
learning proxy (RMLP) for black carbon (BC) estimation from
indirect measurements of low-cost sensors (LCSs) taken by IoT
nodes in an air quality monitoring network. RMLP uses the concept
of proxy using machine learning techniques (e.g. SVR, RF or ANN).
The RMLP considers several aspects in the design of the proxy
such as the calibration of the LCSs, the aggregation of data, the
elimination of noise in the different sensor streams, the imputation of
missing values and the selection of the sensors that can participate in
the proxy. Among the results obtained we can observe that the three
models used to create the proxy have similar performances, although
SVR performs slightly better than RF and ANN. We have also

observed that filtering the sensor streams with a Savitzky-Golay low-
pass filter improves the proxy results and that high aggregation of
the data worsens the proxy performance. Finally, we have studied the
impact of missing data by adding a missing value imputation method
based on MICE, observing that MICE improves proxy estimation
with losses up to 50% with respect to not using imputations. The
results obtained show a different impact depending on the type of
feature that has gaps in the data, and it is observed that the imputation
method mitigates these losses when estimating BC.
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